Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha

نویسندگان

  • Min Jeong Sohn
  • Su Jin Yoo
  • Doo-Byoung Oh
  • Ohsuk Kwon
  • Sang Yup Lee
  • Andriy A. Sibirny
  • Hyun Ah Kang
چکیده

In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast Hansenula polymorpha, which has attracted much attention as an industrial yeast strain for various biotechnological applications. Quite interestingly, the detailed sulfur metabolic pathway of H. polymorpha, which was reconstructed based on combined analyses of the genome sequences and validation by systematic gene deletion experiments, revealed the absence of de novo synthesis of homocysteine from inorganic sulfur in this yeast. Thus, the direct biosynthesis of cysteine from sulfide is the only pathway of synthesizing sulfur amino acids from inorganic sulfur in H. polymorpha, despite the presence of both directions of transsulfuration pathway Moreover, only cysteine, but no other sulfur amino acid, was able to repress the expression of a subset of sulfur genes, suggesting its central and exclusive role in the control of H. polymorpha sulfur metabolism. 35S-Cys was more efficiently incorporated into intracellular sulfur compounds such as glutathione than 35S-Met in H. polymorpha, further supporting the cysteine-centered sulfur pathway. This is the first report on the novel features of H. polymorpha sulfur metabolic pathway, which are noticeably distinct from those of other yeast and filamentous fungal species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The methylotrophic yeast Hansenula polymorpha: its use in fundamental research and as a cell factory.

During the last decade methylotrophic yeasts have gained increasing interest, both for fundamental (van der Klei and Veenhuis, 1996) and applied purposes (van Dijk et al., 2000; Gellissen, 2000). The special value of these yeasts (mainly Pichia pastoris and Hansenula polymorpha) in fundamental research is undoubtedly related to studies on the principles of peroxisome homeostasis (biogenesis vs....

متن کامل

Comparison of biochemical properties of recombinant phytase expression in the favorable methylotrophic platforms of Pichia pastoris and Hansenula polymorpha

Phytic acid is the dominant form of phosphorous in plant seeds. However, phytic acid cannot beutilized by animals and causes them serious phosphate deficiency. Utilization of phytase as ananimal feed additive can affect liberation of phosphor and its mineral availability. In this study,heterologous expression of the A. niger phyA gene was investigated in the methylotrophic yeastsP. pastoris and...

متن کامل

Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation

BACKGROUND The methylotrophic yeast, Hansenula polymorpha is an industrially important microorganism, and belongs to the best studied yeast species with well-developed tools for molecular research. The complete genome sequence of the strain NCYC495 of H. polymorpha is publicly available. Some of the well-studied strains of H. polymorpha are known to ferment glucose, cellobiose and xylose to eth...

متن کامل

Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor

BACKGROUND The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task. RESULTS A urate-selective ...

متن کامل

Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1

BACKGROUND Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermedia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014